Multiple pathways in pressure-induced phase transition of coesite.
نویسندگان
چکیده
High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture.
منابع مشابه
The influence of OH in coesite on the kinetics of the coesite-quartz phase transition
Coesite is an important pressure indicator for metamorphic rocks of ultra-high pressure origin. However, it often does not survive exhumation, but reacts back to quartz. Although it was shown experimentally that hydrogen incorporation in coesite increases with increasing pressure, the few coesite relics, which are found in nature, are “dry”. Thus, does the incorporation of hydrogen promote the ...
متن کاملThermodynamics of polymorphic transformations in silica. Thermal properties from 5 to 1070°K and pressure-temperature stability fields for coesite and stishovite *
Cryogenic heat-capacity measurements on coesite and stishovite provide thermodynamic properties from 5 to 350°K. The heat capacities (C,), entropies (SO), and Gibbs energy functions [-(Go H”,)/T] are 10.85, 9.65, 4.124, and 10.27, 6.64, 2.362 at 298015°K for coesite and stishovite, respectively, in Cal/( mole “K). Enthalpies of transition for phase changes were determined by solution calorimetr...
متن کاملPolymorphism, superheating, and amorphization of silica upon shock wave loading and release
We present a detailed and quantitative examination of the thermodynamics and phase change mechanisms (including amorphization) that occur upon shock wave loading and unloading of silica. We apply DebyeGrüneisen theory to calculate both the Hugoniot of quartz and isentropic release paths. Quartz converts to stishovite between 15 and 46 GPa without undergoing pressure-induced amorphization and pe...
متن کاملPressure Induced Amorphization in Crystalline Silica: Soft Phonon Modes and Shear Instabilities in Coesite
Quartz and closely related materials will transform under pressure from crystalline states to amorphous forms. Here we examine coesite, a high pressure form of silica which also undergoes pressure induced amorphization. We nd that coesite, like quartz, possesses a shear instability closely coupled to a zone edge phonon softening at pressures comparable to the amorphization transformation. The c...
متن کاملShock Processes in Porous Quartzite: Transmission Electron Microscope Observations and Theory
A high-resolution study of shocked Coconino Sandstone from Meteor Crater, Arizona, was undertaken using transmission electron microscopy to investigate the textural relations of high-pressure phases produced by meteorite impact. In weakly shocked rocks (estimated average pressure, P < 100 kb), quartz in the interiors of grains retains its initial microstructure, but near original grain boundari...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 49 شماره
صفحات -
تاریخ انتشار 2017